miércoles, 27 de abril de 2016

Instituto Normal Centro América INCA JV

Introducción
Este tema trata sobre la fotosíntesis que es la capacidad que tienen las plantas de producir sus propio alimento, para realizar la fotosíntesis las plantas deben de tener clorofila que es lo que produce su color, la clorofila es la encargada de absorber  la luz. La fotosíntesis trasforma la luz del sol en energía química, consiste, básicamente en la elaboración de azucares, minerales y agua con la qyuda de luz natural.

Fotosíntesis

La fotosíntesis es un proceso metabólico que llevan a cabo algunas células de organismos autótrofos para sintetizar sustancias orgánicas a partir de otras inorgánicas. Para desarrollar este proceso se convierte la energía luminosa en energía química estableEl adenosín trifosfato (ATP) es la primera molécula en la cual dicha energía química queda almacenada. En la continuidad de la fotosíntesis, el ATP se utiliza para sintetizar otras moléculas orgánicas.

Concretamente este proceso es llevado a cabo por los seres vivos que están conformados en gran medida por la clorofila. De ahí que podamos establecer que la fotosíntesis es realizada por algas, bacterias y plantas de diversa tipología.

Básicamente podríamos decir que este proceso se encuentra conformado por dos fases perfectamente diferenciadas:
• Fase primaria. Como lumínica también se conoce a esta etapa que es en la cual tienen lugar lo que serían las reacciones químicas citadas anteriormente gracias tanto a lo que es la clorofila como a la luz del Sol.

• Fase secundaria. Esta también es llamada fase oscura y consiste en la producción de compuestos formados por hidrógeno, carbono y oxígeno. La misma se lleva a cabo gracias a que, sin necesidad de que exista luz solar, el hidrógeno conseguido en la anterior etapa se suma al dióxido de carbono y así es como se producen aquellos compuestos.

La fotosíntesis es imprescindible para la vida en nuestro planeta ya que, al partir de la luz y la materia inorgánica, logra sintetizar materia orgánica. El proceso permite fijar el dióxido de carbono (CO2) de la atmósfera y liberar oxigeno (O2).

También es muy importante la fotosíntesis en nuestra vida porque a través de ella se consigue el equilibrio perfecto entre los seres heterótrofos y autótrofos, se libera oxígeno y es la clave para que exista la diversidad de vida que hay en la Tierra.
Los cloroplastos que se encuentran en las células eucariotas fotosintéticas son los orgánulos que permiten el desarrollo de la fotosíntesis. Están envueltos por dos membranas y presentan vesículas conocidas como tilacoides, donde se alojan las moléculas y los pigmentos que convierten la energía luminosa en energía química. Uno de estos pigmentos es la clorofila.
Entre los factores externos que influyen en la fotosíntesis se encuentran la temperatura, la intensidad luminosa, el tiempo de iluminación, la escasez de agua y la concentración de dióxido de carbono y oxígeno en el aire.
Los científicos trabajan desde hace décadas en la fotosíntesis artificial que permitiría la reproducción controlada del proceso para capturar energía solar a gran escala y transformarla en energía química. Pese a que aún no se ha cumplido el objetivo, la comunidad científica cree que podrá lograrse en el futuro dado el avance de las investigaciones.


Etapa fotodependiente

La fotosíntesis ocurre en organeros específicas llamadas cloroplastos, que se encuentran en células fotosintéticas, es decir, en células de productores expuestas al sol. En plantas terrestres estas células están en hojas y tallos verdes .Existen también algas fotosintéticas que no poseen cloroplastos, pues son organismos unicelulares procariontes (sin núcleo verdadero ni compartimientos celulares) y también realizan la fotosíntesis. Estas células, llamadas cianofitas o algas verde azules, son seguramente muy similares a los primeros organismos fotosintéticos que habitaron nuestro planeta y realizan la fotosíntesis en prolongaciones de su membrana plasmática y en su citoplasma.
El proceso de fotosíntesis ocurre en 2 etapas, la primera, llamada etapa fotodependiente, ocurre sólo en presencia de luz y la segunda, llamada etapa bioquímica o ciclo de Calvin, ocurre de manera independiente de la luz. Pero antes de comenzar a estudiar ambas etapas es conveniente ver algunas características de los cloroplastos que permiten la realización de la captación de energía lumínica.
En principio, los cloroplastos tienen pigmentos que son moléculas capaces de "capturar" ciertas cantidades de energía lumínica  . Dentro de los pigmentos más comunes se encuentra la clorofila a y la clorofila b, típica de plantas terrestres, los carotenos, las xantóficas, fucoeritrinas y fucocianinas, cada uno de estos últimos característico de ciertas especies. Cada uno de estos pigmentos se "especializa" en captar cierto tipo de luz. 
Como sabemos el espectro lumínico que proviene del sol se puede descomponer en diferentes colores a través de un prisma, cada color corresponde a una cierta intensidad de luz, que puede medirse en longitudes de onda. Cada pigmento puede capturar un tipo distinto de longitud de onda ß.

En el esquema se muestran los espectros de absorción de la clorofila (a y b), carotenos, ficoeritrina y ficocianina. Como puede observarse cada pigmento tiene un pico de absorción característico. 
Pero para hacer más eficiente la absorción de luz las plantas utilizan sistemas "trampa" o fotosistemas, con un pigmento principal como la clorofila a o b y diferentes pigmentos accesorios. A través de estos sistemas los autótrofos pueden aprovechar mejor la energía lumínica.


Así, los fotosistemas cuentan con un centro de reacción ocupado generalmente por clorofila (a o b) en las plantas terrestres, hacia donde es dirigida la energía lumínica, como se verá a continuación. 
Antes de comenzar a describir los reacciones químicas que ocurren en la etapa fotodependiente es conveniente ubicarnos espacialmente en el lugar de la planta donde ocurren.
Como ya hemos dicho, los cloroplastos se ubican en las células expuestas a la luz, es decir, aquéllas partes de la planta que son fotosintéticamente activas. 
En el caso de las plantas superiores la fotosíntesis ocurre principalmente en las hojas, y dentro de éstas, en cloroplastos ubicados en células del parénquima, que es uno de los tejidos de la hoja. Las hojas, además, poseen pequeñas abertura o "estomas"  , formadas por células que pueden agrandar o cerrar la abertura y que permiten, de este modo, regular la entrada o salida de agua y gases, como el oxígeno y dióxido de carbono.
Los cloroplastos son organelas formadas por una doble membrana externa y vesículas apiladas formando estructuras llamadas grana. Cada grana está formada por varios tilacoides. 



En la membrana de los tilacoides se ubican los pigmentos fotosintéticos, que pueden captar la energía lumínica y dar comienzo a la etapa fotodependiente.

Como ya se ha mencionado, la clorofila y otros pigmentos se ubican en los cloroplastos, dentro de la membrana tilacoide, en unidades llamadas fotosistemas. Cada unidad tiene numerosas moléculas de pigmentos que se utilizan como antenas para atrapar la luz. Cuando la energía lumínica es absorbida por uno de los pigmentos, se desprenden electrones que rebotan en el fotosistema hasta llegar al centro de reacción, la clorofila a. El fotosistema que reacciona primero ante la presencia de luz es el fotosistema I.

La estructura de la membrana tilacoide permite que los electrones, provenientes de la exitación fotoquímica de la clorofila sean recibidos por moléculas especializadas, llamadas aceptores, que sufren sucesivamente reacciones de óxido-reducción  y transportan los electrones hasta un aceptor final, la coenzima NADP.
Para que se lleve a cabo la producción de ATP (energía química) y se reduzca la coenzima NADP es necesario que reaccione otro fotosistema asociado, el fotosistema II. En este se produce también la exitación fotoquímica de la clorofila, que libera electrones. Los electrones son transferidos de un aceptor a otro a través de una cadena de transporte que los guía hasta el fotosistema I, quedando de este modo restablecida la carga electroquimica de esta molécula. Simultáneamente, en el fotosistema II se produce la lisis o ruptura de una molécula de agua. Este proceso, también llamado fotooxidación del agua, libera electrones, que son capturados por el fotosistema II, oxígeno, que es liberado a la atmosfera a través de los estomas, y protones, que quedan retenidos en el espacio intratilacoideo.

Este esquema muestra cómo incide la luz en los fotosistemas y desencadena las reacciones de la etapa fotodependiente. Los productos de esta etapa, NADPH y ATP serán utilizados en la segunda etapa de la fotosíntesis.
En la etapa fotodependiente se producen dos procesos químicos que son decisivos para la producción final de glucosa, estos son la reducción de la coenzima NADP y la síntesis de ATP. El NADP se reduce a NADPH+H+ con los protones que libera la molécula de agua. La coenzima NADP [5] reducida aportará los protones necesarios para sintetizar la molécula de glucosa, mientras el ATP liberará la energía necesaria para dicha síntesis.
Asociada a la membrana tilacoide se encuentra la enzima ATP sintetasa (ó ATP asa) que es la responsable de la producción de ATP. Esta enzima es capaz de transportar protones a través de un canal ubicado en su interior y transformar la energía cinética de los protones en energía química que se conserva en el ATP [6] . De esta forma, la enzima ATP sintetasa libera el gradiente electroquímico que se produce dentro del tilacoide y utiliza la energía de este gradiente para adicionar un grupo fosfato al ADP produciendo ATP. Por otra parte, los protones que ahora se encuentran el la matriz del cloroplasto, se unen a la coenzima NADP produciendo NADPH+H+. 

Respiración aeróbica y anaeróbica

  1. 1. RESPIRACIÓN AERÓBICA Y ANAERÓBICA
  2. 2. O Las células llevan a cabo diversos procesos para mantener su funcionamiento normal, muchos de los cuales requieren energía. La respiración celular es una serie de reacciones mediante las cuales la célula degrada moléculas orgánicas y produce energía.C6H12O6 CO2 + H2O + Energía(ATP)glucosa bióxido agua de carbono
  3. 3. O La respiración celular se divide en pasos y sigue distintas rutas en presencia o ausencia de oxígeno. En presencia de oxígeno sucede respiración aeróbica y en ausencia de oxígeno sucede respiración anaeróbica. Ambos procesos comienzan con la glucólisis.
  4. 4. LA RESPIRACIÓN CELULAR AERÓBICA O es el conjunto de reacciones en las cuales el ácido pirúvico producido por la glucólisis se transforma en CO2 y H2O, y en el proceso, se producen 36 moléculas de ATP.
  5. 5. O En las células eucariotas este proceso ocurre en el mitocondrio en dos etapas llamadas el Ciclo de Krebs (o ciclo de ácido cítrico) y la cadena de transporte de electrones.Reacción de transición:2 ácidos pirúvicos + 2 NAD+ + 2 CoA 2 Acetyl CoA + 2 NADH + 2 CO2Ciclo de Krebs:Oxaloacetato + acetyl CoA Citrato + CoAEn el ciclo de Krebs se producen: 4CO2, 6NADH, 2 FADH2 y 2 ATP por cada molécula inicial de glucosa
  6. 6. O En la cadena de transporte de electrones, los electrones producidos en glucólisis y en el ciclo de Krebs pasan a niveles más bajos de energía y se libera energía para formar ATP. Durante este transporte de electrones las moléculas transportadoras se oxidan y se reducen. El último aceptador de electrones de la cadena es el oxígeno. En la cadena se producen 34 moléculas de ATP a partir de una molécula inicial de glucosa.
  7. 7. RESPIRACIÓN CELULAR ANAERÓBICAO Este mecanismo no es tan eficiente como la respiración aeróbica, ya que sólo produce 2 moléculas de ATP, pero al menos permite obtener alguna energía a partir del piruvato que se produjo en la glucólisis. Hay dos tipos de respiración celular anaeróbica: fermentación láctica y fermentación alcohólica.
  8. 8. FERMENTACIÓN LÁCTICA:O Ácido pirúvico + NADH + H+ ácido láctico + NAD+
  9. 9. O ocurre en algunas bacterias y gracias a este proceso obtenemos productos de origen lácteo tales como yogurt, crema agria y quesos. Este proceso sucede también en el músculo esqueletal humano cuando hay deficiencia de oxígeno, como por ejemplo, durante el ejercicio fuerte y continuo.
  10. 10. FERMENTACIÓN ALCOHÓLICA:En la fermentación alcohólica suceden dosreacciones consecutivas: O Ácido pirúvico acetaldehído + CO2 O acetaldehído + NADH + H+ etanol + NAD+
  11. 11. O Este tipo de fermentación ocurre en levaduras, ciertos hongos y algunas bacterias, produciéndose CO2 y alcohol etílico (etanol); ambos productos se usan en la producción de pan, cerveza y vino.
Comentario
la fotosíntesis es muy importante y seda por las plantas que están espuertas a la luz o las que no como lo son las algas,la fotosíntesis también es el proceso que mantiene vivo nuestro planeta Todos los organismos heterótrofos dependen de estas conversiones energéticas y de materia para su subsistencia. La respiración anaeróbica es un proceso qui mico donde el oxido es un compuesto clave en el aire, la respiración anaerobica se produce sin oxigeno. 

Anexos


}






Egrafia
https://es.wikipedia.org/wiki/Respiración_anaerobia

https://es.wikipedia.org/wiki/Respiración_aeróbica

                                             www.monografias.com › Biologia


                                                https://es.wikipedia.org/wiki/Fotosíntesis




No hay comentarios.:

Publicar un comentario